16 research outputs found

    New Pathways to support social-ecological Systems in Change

    Get PDF
    Klimawandel und Biodiversitätsverlust sowie Verstädterung und demografischer Wandel haben tiefgreifende Auswirkungen auf Städte und ihre Ökosysteme und damit auf die Lebensbedingungen der Mehrheit der Menschheit. Die Geschwindigkeit des Wandels und die Dringlichkeit der Folgen macht Umweltmonitoring zu einem potentiell interessanten Tool für nachhaltige und resiliente Stadtentwicklung. Der erste Artikel gibt einen Überblick über den aktuellen Stand der Fernerkundung in Bezug auf Stadtökologie und zeigt, dass Fernerkundung relevant für nachhaltige Stadtplanung ist. Es bestehen jedoch bestehen Mängel, da viele Studien nicht direkt umsetzbar sind. Der zweite Artikel zeigt, dass eine wachsende Stadt Möglichkeiten für den Ausbau der grünen Infrastruktur bieten kann. Im dritten Artikel wird untersucht, wie sich die städtische Dichte auf die Bereitstellung von Ökosystemdienstleistungen der grünen Infrastruktur auswirkt. Es wird gezeigt, dass eine hohe Siedlungsdichte nicht zwangsläufig zu einem geringeren Biodiversitätspotenzial oder einer geringeren Kühlkapazität führt. Allerdings sind dicht bebaute Gebiete mit geringer Vegetationsbedeckung besonders auf grüne Infrastruktur angewiesen. Der vierte Artikel befasst sich mit der Frage, wie naturbasierte Lösungen durch eine bessere Vernetzung der Beteiligten gestärkt werden können. Auf der Grundlage einer gezielten Literaturrecherche über Informationstechnologie zur Unterstützung sozial-ökologischer Systeme wird ein Instrument zur Entscheidungshilfe entwickelt. Dieses kombiniert ökologische und soziale Indikatoren, um Klimawandeladaption in Übereinstimmung mit den sozio-ökologischen Bedingungen entwickeln zu können. Der fünfte Artikel bietet eine grundsätzliche Perspektive zur Unterstützung der städtischen Nachhaltigkeit, die auf dem ökologischen-Trait Konzept basiert. Zusammen bieten die fünf Artikel Wege für die Fernerkundungswissenschaft und die angewandte Raumplanung für nachhaltige und resiliente Entwicklungen in Städten.Climate change and biodiversity loss, as well as urbanisation and demographic change, are major global challenges of the 21st century. These trends have profound impacts on cities and their ecosystems and thus on the living conditions of the majority of humanity. This raises the need for timely environmental monitoring supporting sustainable and resilient urban developments. The first article is an overview of the state of the art of remote sensing science in relation to urban ecology. The review found that remote sensing can contribute to sustainable urban policy, still insufficiencies remain as many studies are not directly actionable. The second article shows that a growing city can provide opportunities for an increase in green infrastructure. Here, remote sensing is used for long-term analysis of land-use in relation to urban forms in Berlin. The third article examines how urban density affects ecosystem service provision of urban green infrastructure. It is shown that residential density does not necessarily lead to poor biodiversity potential or cooling capacity. However, dense areas with low vegetation cover are particularly dependent on major green infrastructure. The fourth article explores ways to reinforce nature-based solutions by better connecting and informing stakeholders. Based on a focussed literature review on information technology supporting urban social-ecological systems, a decision support tool is developed. The tool combines indicators based on ecological diversity and performance with population density and vulnerability. This way, climate change adaptation can be developed in accordance with socio-ecological conditions. The concluding fifth article offers an outlook on a larger framework in support of urban sustainability, based on the ecological trait concept. Together the five research papers provide pathways for urban remote sensing science and applied spatial planning that can support sustainable and resilient developments in cities

    Urban Green Fabric Analysis Promoting Sustainable Planning in Guatemala City

    Get PDF
    Urbanization rate in Central America is the second fastest worldwide and its major cities face challenges regarding urban sustainability. Urban Green Fabric (UGF) is an important material condition for the urban quality of life and, therefore, key to planning processes. We performed an analysis of the UGF of Guatemala City including the identification and classification of UGF, their spatial pattern analysis, construction of ensembles of districts (zones) and revealing citizen’s interactions with UGF. We used remote sensing and land use mapping techniques, spatial metrics and a questionnaire survey. Main results are the UGF map of Guatemala City and six ensembles of zones based on a set of indicators. We further revealed citizens’ recognition of green spaces, their perceptions about green space amount and availability as well as their support for UGF future interventions. Finally, we discuss the implications for planning promoted by our results and suggest three actions for UGF sustainability: Creation of new green spaces, protecting existing green spaces and enhancing the mosaic with different green spaces types. UGF is an essential decision support tool for a diversity of actors.Horizon 2020Deutscher Akademischer AustauschdienstBundesministerium für Bildung und ForschungPeer Reviewe

    A glimpse into the future of exposure and vulnerabilities in cities? Modelling of residential location choice of urban population with random forest

    Get PDF
    The most common approach to assessing natural hazard risk is investigating the willingness to pay in the presence or absence of such risk. In this work, we propose a new, machine-learning-based, indirect approach to the problem, i.e. through residential-choice modelling. Especially in urban environments, exposure and vulnerability are highly dynamic risk components, both being shaped by a complex and continuous reorganization and redistribution of assets within the urban space, including the (re-)location of urban dwellers. By modelling residential-choice behaviour in the city of Leipzig, Germany, we seek to examine how exposure and vulnerabilities are shaped by the residential-location-choice process. The proposed approach reveals hot spots and cold spots of residential choice for distinct socioeconomic groups exhibiting heterogeneous preferences. We discuss the relationship between observed patterns and disaster risk through the lens of exposure and vulnerability, as well as links to urban planning, and explore how the proposed methodology may contribute to predicting future trends in exposure, vulnerability, and risk through this analytical focus. Avenues for future research include the operational strengthening of these linkages for more effective disaster risk management.Peer Reviewe

    Modelling urban bird breeding ranges with remotely sensed heterogeneity in plant traits using a random forest

    Get PDF
    Birds strongly respond to vegetation structure and composition, yet typical habitat models based on earth observation (EO) data use pre-classified data such as land use state classes for the habitat modelling. Since this neglects factors of internal spatial composition of the land use classes, we propose a new scheme of deriving multiple continuous indicators of urban vegetation heterogeneity using high-resolution earth observation datasets. The deployed concepts encompass spectral trait variations for the quantification of vegetation heterogeneity as well as subpixel vegetation fractions for the determination of the density of vegetation. Both indicators are derived from RapidEye data, thus featuring a continuous resolution of 5 meters. Using these indicators of plant heterogeneity and quantity as predictors, we can model the breeding bird habitats with a random forest machine learning classifier for our case study Leipzig while exclusively using one input dataset. Separate models are trained for the breeding ranges of 60 urban bird species (including 10 on the German red list), featuring medium to high accuracies (54–87%). Analysing similarities between models regarding variable importance of the single predictors allows species groups to be discriminated based on their preferences and dependencies regarding the amount of vegetation on the one hand, and its structure and heterogeneity on the other. The combination of continuous high-resolution EO data paired with a machine learning technique creates novel and very detailed insights into the ecology of the urban avifauna opening up possibilities of analysing and optimising different greenspace management schemes or future urban developments concerning overall bird species diversity or single species under threat of local extinction

    Repetitive recombinant human bone morphogenetic protein 2 injections improve the callus microarchitecture and mechanical stiffness in a sheep model of distraction osteogenesis

    Get PDF
    Evidence suggests that recombinant human bone morphogenetic protein 2 (rhBMP-2) increases the mechanical integrity of callus tissue during bone healing. This effect may be either explained by an increase of callus formation or a modification of the trabecular microarchitecture. Therefore the purpose of the study was to evaluate the potential benefit of rhBMP-2 on the trabecular microarchitecture and on multidirectional callus stiffness. Further we asked, whether microarchitecture changes correlate with optimized callus stiffness. In this study a tibial distraction osteogenesis (DO) model in 12 sheep was used to determine, whether percutaneous injection of rhBMP-2 into the distraction zone influences the microarchitecture of the bone regenerate. After a latency period of 4 days, the tibiae were distracted at a rate of 1.25 mm/day over a period of 20 days, resulting in total lengthening of 25 mm. The operated limbs were randomly assigned to one treatment groups and one control group: (A) triple injection of rhBMP-2 (4 mg rhBMP-2/injection) and (B) no injection. The tibiae were harvested after 74 days and scanned by µCT (90 µm/voxel). In addition, we conducted a multidirectional mechanical testing of the tibiae by using a material testing system to assess the multidirectional strength. The distraction zones were tested for torsional stiffness and bending stiffness antero-posterior (AP) and medio-lateral (ML) direction, compression strength and maximum axial torsion. Statistical analysis was performed using multivariate analysis of variance (ANOVA) followed by student's t-test and Regression analysis using power functions with a significance level of P<0.05. Triple injections of rhBMP-2 induced significant changes in the trabecular architecture of the regenerate compared with the control: increased trabecular number (Tb.N.) (treatment group 1.73 mm/1 vs. control group 1.2 mm/1), increased cortical bone volume fraction (BV/TV) (treatment group 0.68 vs. control group 0.47), and decreased trabecular separation (Tb.Sp.) (treatment group 0.18 mm vs. control group 0.43 mm)

    Reinforcing nature-based solutions through tools providing social-ecological-technological integration

    Get PDF
    While held to be a means for climate change adaptation and mitigation, nature-based solutions (NbS) themselves are vulnerable to climate change. To find ways of compensating for this vulnerability we combine a focused literature review on how information technology has been used to strengthen positive social-ecological-technological feedback, with the development of a prototype decision-support tool. Guided by the literature review, the tool integrates recent advances in using globally available remote sensing data to elicit information on functional diversity and ecosystem service provisioning with information on human service demand and population vulnerability. When combined, these variables can inform climate change adaptation strategies grounded in local social-ecological realities. This type of integrated monitoring and packaging information to be actionable have potential to support NbS management and local knowledge building for context-tailored solutions to societal challenges in urban environments.Peer reviewe

    ERRATUM: Repetitive recombinant human bone morphogenetic protein 2 injections improve the callus microarchitecture and mechanical stiffness in a sheep model of distraction osteogenesis

    Get PDF
    Due to a technical error, Dr. Marc-Frederic Pastor was omitted from the author list of this article. The correct author details appear above.<br /

    Remote sensing of geomorphodiversity linked to biodiversity — part III: traits, processes and remote sensing characteristics

    Get PDF
    Remote sensing (RS) enables a cost-effective, extensive, continuous and standardized monitoring of traits and trait variations of geomorphology and its processes, from the local to the continental scale. To implement and better understand RS techniques and the spectral indicators derived from them in the monitoring of geomorphology, this paper presents a new perspective for the definition and recording of five characteristics of geomorphodiversity with RS, namely: geomorphic genesis diversity, geomorphic trait diversity, geomorphic structural diversity, geomorphic taxonomic diversity, and geomorphic functional diversity. In this respect, geomorphic trait diversity is the cornerstone and is essential for recording the other four characteristics using RS technologies. All five characteristics are discussed in detail in this paper and reinforced with numerous examples from various RS technologies. Methods for classifying the five characteristics of geomorphodiversity using RS, as well as the constraints of monitoring the diversity of geomorphology using RS, are discussed. RS-aided techniques that can be used for monitoring geomorphodiversity in regimes with changing land-use intensity are presented. Further, new approaches of geomorphic traits that enable the monitoring of geomorphodiversity through the valorisation of RS data from multiple missions are discussed as well as the ecosystem integrity approach. Likewise, the approach of monitoring the five characteristics of geomorphodiversity recording with RS is discussed, as are existing approaches for recording spectral geomorhic traits/ trait variation approach and indicators, along with approaches for assessing geomorphodiversity. It is shown that there is no comparable approach with which to define and record the five characteristics of geomorphodiversity using only RS data in the literature. Finally, the importance of the digitization process and the use of data science for research in the field of geomorphology in the 21st century is elucidated and discussed

    Integrating Quantity and Quality to Assess Urban Green Space Improvement in the Compact City

    Get PDF
    Urban green space (UGS) has gained much attention in terms of urban ecosystems and human health. Measures to improve green space in compact cities are important for urban sustainability. However, there is a knowledge gap between UGS improvement and planning management. Based on the integration of quantity and quality, this research aims to identify UGS changes during urban development and suggest ways to improve green space. We analyse land use changes, conduct a hotspot analysis of land surface temperature (LST) between 2005 and 2015 at the city scale, and examine the changes in small, medium and large patches at the neighbourhood scale to guide decision-makers in UGS management. The results show that (i) the redevelopment of urban brownfields is an effective method for increasing quantity, with differences depending on regional functions; (ii) small, medium and large patches of green space have significance in terms of improving the quality of temperature mitigation, with apparent coldspot clustering from 2005 to 2015; and (iii) the integration of UGS quality and quantity in planning management is beneficial to green space sustainability. Green space improvement needs to emphasize the integration of UGS quantity and quality to accommodate targeted planning for local conditions.Peer Reviewe

    Old-Growth Forests in Urban Nature Reserves: Balancing Risks for Visitors and Biodiversity Protection in Warsaw, Poland

    Get PDF
    Urban nature reserves in Poland are precious relics of ancient nature with preserved biodiversity. They consist of valuable trees several 100 years old, are biodiverse, and are valuable recreational spaces right in and around cities. It is therefore critical to manage tradeoffs between visitor safety due to, e.g., falling dead branches and the need for old-grown trees for biodiversity conservation. This study aimed to determine whether airborne laser scanning data (LiDAR) can confirm that trees exhibiting the worst crown defoliation are the first to be damaged in storms. Our results show that during Storm Eunice in 2022, the detected defoliated trees, in fact, were damaged the most. Despite such evidence available to the city, no targeted changes to the management of the reserves were taken after the storm. One of the forests was completely closed to visitors; in the other forest, areas with damaged trees were fenced off, and then, the remaining branches and fallen trees were removed to make the forest available for recreation. Using available evidence such as LiDAR data, we propose more targeted and nuanced forms of managing biodiversity conservation in conjunction with visitor safety. This includes the establishment of priority areas, visitor information, and visitor management. This way, airborne laser scanning and Geographic Information Systems can be used to balance management needs accounting for both biodiverse old-grown forest structures while at the same time providing added safety for visitors.EUfunding organisations Academy of Finland (Finland)Bundesministerium für Bildung und Forschung (BMBF, Germany)Federal Ministry of Education and Research (Germany)National Science Centre (Poland)Research Foundation Flanders (fwo, Belgium)Fundação para a Ciência e Tecnologia (Portugal)European H2020 Research and Innovation programmePeer Reviewe
    corecore